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Topology-Based Graph Learning
Graph Embeddings: Theory meets Practice
Bastian Rieck (@Pseudomanifold)


https://twitter.com/Pseudomanifold

Graph learning

Tasks

% Graph classification

>

Graph regression

>

Node/edge classification

a3

Node/edge regression

AT

# Link prediction
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Graph representations

Fundamental properties

# Two graphs G and G’ can have a different number of vertices.
% Hence, we require a vectorised representation f: G — R of graphs.

% Such a representation f needs to be permutation-invariant.
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Now and then

Shallow approaches

% node2vec (encoder—decoder)
% Graph kernels (RKHS feature maps)

% Laplacian-based embeddings

Deep approaches

# Graph convolutional networks
# Graph isomorphism networks

# Graph attention networks

HELHOUTZ AW Institute of Al for Health
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Message passing

The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger

parts of the graph.
A % Operations remain local.
% Message passing can be iterated.
B C % Need to define aggregation function.
) % Representations can be combined.
E
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Message passing

The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger

parts of the graph.
A % Operations remain local.
% Message passing can be iterated.
B C % Need to define aggregation function.
DW aggregate (sum, mean, ..) % Representations can be combined.
E
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Graph neural networks in a nutshell

%

Learn node representations h, based on aggregated attributes a,,.

% Aggregate them over neighbourhoods.

>

% lteration k contains information up to k hops away.

a3

Repeat procedure K times.
a® = aggregate(k)({h;k_l) lue JVG(U)})

P = combine(k)(h,(,k_”,a,(,k))

he = readout({h,(,K) lve 7/6})

This terminology follows K. Xu, W. Hu, ]. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural
Networks?, ICLR, 2019.
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Expressivity of graph neural networks

The Weisfeiler—Lehman test for graph isomorphism

1 Create a colour for each node in the graph (based on its label or its degree).
2 Collect colours of adjacent nodes in a multiset.
3 Compress the colours in the multiset and the node’s colour to form a new one.

4 Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

gé? The other direction is not valid! Non-isomorphic graphs can give rise to coinciding
compressed labels.

WL[1] is the baseline for measuring GNN expressivity.">

'C. Morris et al., ‘Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks’, AAAI, 2019.
*K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural Networks?, ICLR, 2019.
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Weisfeiler-Lehman subtree features
Exampleforh =1

vz
Us
U,
4 Us .
" 3
Vs
HELHOUTZ AW Institute of Al for Health
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Weisfeiler-Lehman subtree features
Exampleforh =1

vz Node Ownlabel Adjacentlabels
v U3 Y ° °
4 Us " A ° °
51 6 A ° eoo
Uy Vs ¢
Us ° 'Y
Us L4
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Weisfeiler-Lehman subtree features
Exampleforh =1

vz Node Ownlabel Adjacentlabels Hashed label

v Us n ° ° °

4 Us v ° ° °
Ug 2

U U3 ° YY) °

) ° °
2 4

Us ° (Y3 °

Us ° °

vy ° ° °
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Weisfeiler-Lehman subtree features
Exampleforh =1

(]
2

[ ]
1

vy Label e o
Count 3 1
%
v . Featurevector ®(G):=(3,1,2,1)
5
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A topological layer for graph classification
M. Horn*, E. De Brouwer*, M. Moor, Y. Moreau, B. Rieck' and K. Borgwardt", ‘Topological Graph Neural Networks’, ICLR, 2022

Max Horn Edward De Brouwer  Michael Moor
W @ExpectationMax W @EdwardOnBrew W @Michael_D_Moor

ol
Yves Moreau  Karsten Borgwardt
W @kmborgwardt
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https://twitter.com/ExpectationMax
https://twitter.com/ExpectationMax
https://twitter.com/Michael_D_Moor
https://twitter.com/kmborgwardt

Motivation

Status quo

% Graphs are topological objects.

% But GNNs are incapable of recognising certain topological structures!
Challenge

What can we gain when imbuing them with knowledge about the topology?

HELHOUZ AW Institute of Al for Health




Background

A brief introduction to persistent homology

Persistent homology is based on the concept of a filtration, i.e. an ordering of nodes. As nodes are
added to the graph, its topological features change.

A hierarchy of topological features

% d = 0: connected components

% d=1:cycles

%

d = 2: voids (requires representation of 2-cliques in graph)

oS

d = D: higher-dimensional holes (requires representation of D-cliques in graph)
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.

15 |
o
[ ]
° S 10 |
° S
¢ . 8 5
PY [ ]
o [ ] O,
° \ \ \
. o 0 5 10 15

Creation
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued
Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Background

A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates thata
topological feature was created at step ¢ and destroyed at step d.
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Taking stock

% Filtrations provide multi-scale topological features.
% Persistence diagrams serve as topological descriptors.
Questions

% How to obtain ‘good’ filtrations?

% How to use persistence diagrams (i.e. multi-sets) in a differentiable setting?

HELHOUTZ AW Institute of Al for Health Bastian Rieck
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Topological graph neural networks

Overview

Node attributes k views Diagrams Aggregation Output £

Jue
pulas R e D o XSS S

2 .
j a4

# Useanode map ®: RY — R* to create k different filtrations of the graph.

% Use a coordinatisation function W to create compatible representations of the node
attributes.
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Choosing ® and ¥

% The node map ® can be realised using a neural network.

% The coordinatisation function W can be realised using any vectorisation of persistence
diagrams (landscapes, images, ...), but we found a differentiable coordinatisation function to be
most effective.?

3C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020.

HELHOUTZ AW Institute of Al for Health Bastian Rieck
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Expressivity of TOGL

Theorem

TOGL (and persistent homology) is more expressive than WL[1], i.e. (i) if the WL[1] label sequences for
two graphs Gand G’ diverge, there exists an injective filtration f such that the corresponding persistence
diagrams D, and Dy are not equal, and (ii) there are graphs that WL[1] cannot distinguish but TOGL can!

1

Example graphs

o A Institute of Al for Health
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Experiments

% Take existing GNN architecture.
% Replace one layer by TOGL.

% Measure predictive performance.

This strategy ensures that the number of parameters is approximately the same, thus facilitating
a fair comparison!
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Syntheticdata sets

Binary classification problem; generate same number of graphs for each of the classes. Use
simple topological structures that are nevertheless challenging to detect with standard GNNss.

Cycles Necklaces
AVA

N

A Institute of Al for Health Bastian Rieck




Expressivity

Cyclesdataset

100.0
s
< 75.0
g
5 500
o
&
8 250

GCN-k — GCN-k-TOGL-1 — WL
0.0 1 1 1
1 2 3 4 5 6 7 8
Number of GCN layers / Number of WL iterations
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Expressivity

Necklaces dataset

| L 1 |
100.0 e L # = + ~
S 750 —
S 500
o
&
8 250
GCN-k — GCN-k-TOGL-1 — WL
0.0 1 1 1
1 2 3 4 5 6 7 8
Number of GCN layers / Number of WL iterations
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the utility of
topological features. Hence, we replaced all node features by random ones.

Graph classification

Node classification

METHOD DD ENZYMES MNIST PROTEINS Pattern
GCN-4 68.0+3.6 220+33 762+05 688+28 85.5+0.4
GCN-3-TOGL-1 751 +21 303 +6.5 84.8+0.4 73.8+4.3 86.6+0.1
GIN-4 75.6+2.8 213+6.5 83.4+0.9 74.6+3.1 84.8+0.0
GIN-3-TOGL-1  76.2+2.4 23.7+6.9 84.4+11 739+49 86.7+0.1
GAT-4 63.3+3.7 21.7+29 63.2+104 675+2.6 73.1 +1.9
GAT3-TOGL-1  75.7+21 23.5+6.1 77.2+10.5 72.4+4.6 59.6+33

HELMHOLTZ
MUNICH

AlH Institute of Al for Health
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not driven by the
availability of topological structures!

Graph classification Node classification

METHOD CIFAR-10 DD ENZYMES MNIST PROTEINS-full 1IMDB-B REDDIT-B CLUSTER
CATED-CCN-4 67.3+0.3 729421 657+4.9 97.3+0. 76.4+2.9 — — 60.4 +0.4
WL — 77.7 £2.0 543 +0.9 — 731 +05 71.2+05 78.0+0.6 —
WL-0A — 77.8+1.2 58.9+0.9 — 73.5+0.9 74.0+0.7 87.6+0.3 —
GCN-4 542+15 72.8+41 65.8+4.6 90.0+0.3 76.1 +2.4 68.6+49 928+17 57.0+0.9
GCN-3-TOGL-1  61.7+1.0 73.2+4.7 53.0+9.2 955+0.2 76.0 3.9 72.0+23 89.4+22 60.4+0.2

7.5 0.4 5.5 3.4 3.4
GIN-4 54.8+1.4 70.8+3.8 50.0+12.3 96.1+0.3 723 +33 72.8+25 81.7+6.9 58.5 + 0.1
GIN-3-TOGL-1  61.3+0.4 752+4.2 43.8+7.9 96.1 +0.1 73.6 +4.8 74.2+4.2 89.7+25 60.4+0.2

6.5 4.4 0.0 13 1.4 8.0 1.9
GAT-4 57.4+0.6 711 +31 268+41 941403 713 +5.4 732441 442166 56.6 + 0.4
GAT-3-TOCL-1  63.9+1.2 737429 51.5+73 959403 75.2 3.9 70.8+80 89.5+87 58.4+3.7

6.5 2.6 24.7 1.8 3.9 453 1.8

HELMHOLTZ  AIH Institute of Al for Health
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Conclusion

& ‘Ifall you have is nails, everything looks like a hammer’* Our data sets may actually stymie
progress in GNN research because their classification does not necessarily require
structural information.

%

Nevertheless, higher-order structures (such as cliques) can be crucial in discerning between
different graphs or data sets.

A

%z Can we also learn sparse filtrations?
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Software

https://github.com/aidos-1lab/pytorch-topological
Looking for additional contributors!

4Credit: Mikael Vejdemo-Johannson
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