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What is graph classification?

Potential labels
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How to represent graphs?

� Two graphs G and G′ can have a different number of vertices.
� Hence, we require a vectorised representation f : G →R

d of graphs.

� Such a representation f needs to be permutation-invariant.
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Digression
The Weisfeiler–Lehman test for graph isomorphism

1 Create a colour for each node in the graph (based on its label or its degree).

2 Collect colours of adjacent nodes in a multiset.

3 Compress the colours in the multiset and the node’s colour to form a new one.

4 Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

� The other direction is not valid! Non-isomorphic graphs can give rise to

coinciding compressed labels.
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Weisfeiler–Lehman subtree features
Example for h = 1

v1

v2

v4 v5
v6

v3

v7

Learning Topology-Based Graph Representations Bastian Rieck @Pseudomanifold 13th July 2021 4/30

https://twitter.com/Pseudomanifold


Weisfeiler–Lehman subtree features
Example for h = 1

v1

v2

v4 v5
v6

v3

v7 Node Own label Adjacent labels

v1
v2
v3
v4
v5
v6
v7

Learning Topology-Based Graph Representations Bastian Rieck @Pseudomanifold 13th July 2021 4/30

https://twitter.com/Pseudomanifold


Weisfeiler–Lehman subtree features
Example for h = 1

v1

v2

v4 v5
v6

v3

v7 Node Own label Adjacent labels Hashed label

v1
v2
v3
v4
v5
v6
v7

Learning Topology-Based Graph Representations Bastian Rieck @Pseudomanifold 13th July 2021 4/30

https://twitter.com/Pseudomanifold


Weisfeiler–Lehman subtree features
Example for h = 1

v1

v2

v4 v5
v6

v3

v7 Node Own label Adjacent labels Hashed label

v1
v2
v3
v4
v5
v6
v7

Learning Topology-Based Graph Representations Bastian Rieck @Pseudomanifold 13th July 2021 4/30

https://twitter.com/Pseudomanifold


Weisfeiler–Lehman subtree features
Example for h = 1

v1

v2

v4 v5
v6

v3

v7 Label

Count 3 1 2 1

Feature vector Φ(G) := (3,1,2,1)
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Weisfeiler–Lehman subtree features
Some properties

� Efficient calculation for small values of h.
� Good empirical performance.

� Extensions for continuous features1 and topology-aware variants exist.2

� But: static aggregation over neighbourhoods!

1M. Togninalli†, E. Ghisu†, F. Llinares-López, B. Rieck and K. Borgwardt, ‘Wasserstein

Weisfeiler–Lehman Graph Kernels’, NeurIPS, vol. 32, 2019, pp. 6436–6446, arXiv: 1906.01277
[cs.LG].

2B. Rieck†, C. Bock† and K. Borgwardt, ‘A Persistent Weisfeiler–Lehman Procedure for Graph

Classification’, ICML, 2019, pp. 5448–5458.
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Graph neural networks in a nutshell
Learning better aggregation schemes

� Learn node representations hv based on aggregated attributes av .
� Aggregate them over neighbourhoods.

� Iteration k contains information up to k hops away.
� Repeat procedure K times.

a
(k)
v := aggregate(k)

({
h
(k−1)
u | u ∈ NG(v)

})
h
(k)
v := combine(k)

(
h
(k−1)
v , a

(k)
v

)
hG := readout

({
h
(K)
v | v ∈ VG

})
This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are

Graph Neural Networks?’, ICLR, 2019.
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Message passing in graphs
Example

v1

v2 v3

v4

v5
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aggregate

Here, vi ∈Rd is a d-dimensional attribute vector (use one-hot encoding for labels).

Repeat this process multiple times and update the vertex representations accordingly.

Use a readout function to obtain a graph-level representation.
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Status quo

� Graphs are topological objects.

� But GNNs are incapable of recognising certain topological structures!

� What can we gain when imbuing them with knowledge about the topology?
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The expressivity of a filtration

1

1 3
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G(1)G(2)G(3)
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4
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G(1)G(2)G(3)G(4)G(5)

We already know how to learn a filtration3, but how can we create a layer that neatly

integrates with arbitrary GNNs?

3C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020,

pp. 4314–4323.
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Topological layers for graph classification
TOGL

Topological Graph Neural Networks

Max Horn1, 2, ∗ Edward De Brouwer3, ∗ Michael Moor1, 2 Yves Moreau3

Bastian Rieck1, 2, ∗, † Karsten Borgwardt1, 2, †
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2SIB Swiss Institute of Bioinformatics, Switzerland
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Abstract

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet
have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a
novel layer that incorporates global topological information of a graph using persistent homology.
TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of
the Weisfeiler–Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial
predictive performance for graph and node classification tasks, both on synthetic data sets, which can
be classified by humans using their topology but not by ordinary GNNs, and on real-world data.

1. Introduction

Graphs are a natural description of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address graph learning problems
such as graph classification or node classification. Graph neural networks (GNNs) describe a flexible set of
architectures for graph learning tasks and have seen many successful applications over recent years [50].
At their core, many GNNs are based on iterative message passing schemes. Since these schemes are
collating information over the neighbours of every node, GNNs cannot necessarily capture certain
simple topological structures in graphs, such as cycles [8]. These structures, however, are relevant
for certain applications, such as the analysis of molecular graphs, whose classification necessitates
knowledge about connectivity information [29, 46].

By contrast, methods based on topological features, commonly summarised under the term of
topological data analysis (TDA), have shown promising results in machine learning tasks. Focusing
on coarse structures—such as the presence or absence of cycles—they can be used to provide multi-
scale representations that capture the shape of complex structured and unstructured data sets. In this
paper, we propose a Topological Graph Layer (TOGL) that can be easily integrated into any GNN to
make it ‘topology-aware’. We thus obtain a generic way to augment existing GNNs and increase their
expressivity in graph learning tasks. Figure 1 provides a motivational example that showcases the
potential benefits of using topological information: high predictive performance is reached earlier for a
smaller number of layers.
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Topological graph neural networks
Overview

x(v) ∈Rd

Node attributes

2 1

2 1 = a
(v)
k

1 …

3 1

1 2 = a
(v)
1

2

k views

…

Diagrams

Ψ [v]

+

x(v)

x̃(v)

Aggregation

x̃(v) ∈Rd

Output x̃(v)

Φ Ψ

� Use a node map Φ : Rd →R
k to create k different filtrations of the graph.

� Use a coordinatisation function Ψ to create compatible representations of the

node attributes.
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Expressivity of a GNN

Typical GNN architectures are no more expressive than the Weisfeiler–Lehman test

for graph isomorphism, commonly abbreviated as WL[1].4

Theorem

Persistent homology is at least as expressive as WL[1], i.e. if the WL[1] label
sequences for two graphs G and G′ diverge, there exists an injective filtration f such

that the corresponding persistence diagrams D0 and D′0 are not equal.

Proof sketch.

We first show how to construct an appropriate filtration function f from aWL[1]
label sequence. Since f is not necessarily injective, we show that there is an injective

function f̃ that is arbitrarily close to f and whose corresponding persistence

diagrams D̃0, D̃′0 do not coincide. �

4K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural Networks?’, ICLR, 2019.
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Expressivity of a GNN
There’s more!

There are non-isomorphic graphs that WL[1] cannot distinguish, but persistent
homology can:

G G′

We have β0(G) = β1(G) = 2, because G consists of two connected components and

two cycles, whereas β0(G′) = β1(G′) = 1 as G′ only consists of one connected
component and one cycle.
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Experiments

� Take GCN architecture with 4 convolutional layers (GCN-4).

� Replace second layer by TOGL.

� Use ‘static’ variant that ‘fakes’ topological calculations as an ablation.

Advantage

Architectures have approximately the same number of parameters; we are therefore

comparing ‘apples and apples.’

Plan

1 Assess expressivity on synthetic data sets.

2 Assess predictive performance on data sets without node features.

3 Assess predictive performance on benchmark data sets.
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Expressivity
Cycles data set
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Expressivity
Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the

utility of topological features. Hence, we replaced all node features by random ones.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GAT-4 63.3±3.7 21.7±2.9 63.2±10.4 67.5±2.6
GIN-4 75.6±2.8 21.3±6.5 83.4± 0.9 74.6±3.1

GCN-4 (baseline) 68.0±3.6 22.0±3.3 76.2± 0.5 68.8±2.8

TopoGNN-3-1 75.1±2.1 30.3±6.5 84.8± 0.4 73.8±4.3
TopoGNN-3-1 (static) 68.0±2.4 23.7±5.4 82.9± 0.0 71.2±5.1

Node classification

Cluster Pattern

16.7±0.0 58.3±8.8
16.4±0.1 84.8±0.0

16.7±0.0 85.6±0.0

16.8±0.0 86.7±0.0
16.8±0.0 85.8±0.0
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Performance as a function of the number of layers
MNIST
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not

driven by the availability of topological structures!

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GAT-4 64.2±0.4 75.9±3.8 68.5±5.2 95.5±0.2 76.3±2.4 — —

GATED-GCN-4 67.3±0.3 72.9±2.1 65.7±4.9 97.3±0.1 76.4±2.9 — —

GIN-4 55.5±1.5 71.9±3.9 65.3±6.8 96.5±0.3 74.1±3.4 72.9±4.7 89.8±2.2

WL — 77.7±2.0 54.3±0.9 — 73.1±0.5 71.2±0.5 78.0±0.6

WL-OA — 77.8±1.2 58.9±0.9 — 73.5±0.9 74.0±0.7 87.6±0.3

GCN-4 (baseline) 54.2±1.5 72.8±4.1 65.8±4.6 90.0±0.3 76.1±2.4 68.6±4.9 92.8±1.7

TopoGNN-3-1 61.7±1.0 73.2±4.7 53.0±9.2 95.5±0.2 76.0±3.9 72.0±2.3 89.4±2.2

TopoGNN-3-1 (static) 62.1±0.5 71.0±2.8 49.8±7.0 95.4±0.1 75.7±3.6 72.8±5.4 92.1±1.6

Node classification

CLUSTER PATTERN

57.7±0.3 75.8±1.8

60.4±0.4 84.5±0.1

58.4±0.2 85.6

— —

— —

57.0±0.9 85.5±0.4

60.4±0.2 86.6±0.1

60.5±0.2 85.6±0.1
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Where do we go from here?

� ‘If all you have is a hammer, everything looks like a nail.’ Our data sets may

actually stymie progress in GNN research because their classification does not

necessarily require structural information.

� Nevertheless, higher-order structures (such as cliques) can be crucial in

discerning between different graphs.

� Would an integration into GIN architectures be smarter?

� Can we state conditions under which we are guaranteed to learn an appropriate

filtration function?

� What do we gain from learning a filtration function?
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Filtration curves
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ABSTRACT
The two predominant approaches to graph comparison in recent

years are based on (i) enumerating matching subgraphs or (ii) com-

paring neighborhoods of nodes. In this work, we complement these

two perspectives with a third way of representing graphs: using fil-
tration curves from topological data analysis that capture both edge

weight information and global graph structure. Filtration curves

are highly efficient to compute and lead to expressive represen-

tations of graphs, which we demonstrate on graph classification

benchmark datasets. Our work opens the door to a new form of

graph representation in data mining.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies →Machine learning approaches.

KEYWORDS
Graph classification; graph representation
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1 INTRODUCTION
The search for ways to efficiently compare graphs is one of the clas-

sic tasks in data mining. This line of research is based on several

decades of work in chemoinformatics, which brought about ap-

proaches based on graph isomporphism testing [30, 31], graph edit

distances [7, 29], topological descriptors [5, 14], and later, frequent

subgraph mining [26]. Over the last two decades, however, two

alternative approaches have dominated this field: graph kernels

[4, 22] and graph neural networks [37]. While many different fla-

vors of both approaches exist, they are primarily based on (i) either

enumerating matching subgraphs in two graphs to determine sim-

ilarity or (ii) comparing (direct and higher-order) neighborhoods

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467442

of all pairs of nodes in two graphs. A limitation of the approaches

based on (i) is that enumeration approaches have difficulty including

edge weight information, which is important in many application

domains. A limitation of the approaches based on (ii) is that neigh-

borhoods capture little information about the global structure of a

graph, which also matters in many applications. Despite ongoing

research to overcome these issues, the literature lacks an efficient-

to-compute and powerful graph representation that can take edge

weights and global graph structure into account. In this paper, we

fill this gap by proposing a curve-based representation of a graph,

which we term filtration curves.
Filtration curves are inspired by filtrations, a well-known con-

cept from topological data analysis, where they typically occur in

the context of persistent homology [2, 11]. While persistent ho-

mology is a powerful framework that has proven to be expressive

and useful for graph classification, it imposes a larger inductive

bias on classifiers, thus impeding its use in arbitrary neural net-

work architectures. We assume a more generic view in this paper

and disentangle the concept of graph filtrations from persistent

homology, obtaining a more generic formulation in terms of graph
descriptor functions for graphs. This perspective results in a surpris-

ingly effective graph representation algorithm, which achieves the

best cross-dataset performance compared to the more complicated

state-of-the-art (SOTA) graph classification methods. Our approach

is easy to implement
1
and can be completely parameter-free, giving

rise to a new class of graph representation schemes.

2 RELATEDWORK
The field of graph classification has seen increasing importance over

the last two decades, resulting in a plethora of available methods.

Ranging from graph kernels [4, 22], a mathematically principled way

of addressing graph classification via (implicit) embeddings in Re-

producing Kernel Hilbert Spaces (RKHS), to graph neural networks
(GNNs) [18, 37], a family of neural networks based on message pass-

ing on graphs, numerousmethods have been proposed, and it is hard

to do proper justice to the richness of this field. Despite the large

number of methods available, there are few approaches that are ca-

pable of dealing explicitly with the multi-scale structure of weighted

graphs. While there have been many GNN methods in recent years,

we highlight the Graph Isomorphism Network (GIN) [38] specifi-

cally, since it provides a theoretical framework for understanding

the expressive power of GNNs and links that to the expressive

power of the famous Weisfeiler–Lehman relabeling scheme and

1
Our code and data are available at https://github.com/BorgwardtLab/Filtration_Curves.

Leslie O’Bray Karsten Borgwardt
�@leslieobray �@kmborgwardt

L. O’Bray†, B. Rieck† and K. Borgwardt, ‘Filtration Curves for Graph Representation’,
KDD, NewYork, NY, USA, 2021, in press
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Filtration curves
Motivation

� Given a filtration of graphs, we can easily obtain a persistence diagram.

� Persistence diagrams can be conveniently represented by Betti curves.

� What if we use a more general descriptor function here?

0 2 4 6 8

0
2
4
6
8

Creation

D
e
st
ru
c
ti
o
n

0 2 4 6 8

0
2
4
6
8

ε
0 2 4 6 8

0
2
4
6
8

ε

N
o
.
fe
a
tu
re
s

Learning Topology-Based Graph Representations Bastian Rieck @Pseudomanifold 13th July 2021 22/30

https://twitter.com/Pseudomanifold


Example
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In this example, we use the node label histogram as a descriptor function.
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General idea

� Pick function to induce a graph filtration G1 ⊆G2 · · · ⊆Gk = G.
� Pick descriptor function f : G →R

d .

� Evaluate f alongside the filtration.

� This turns a graph G into a high-dimensional path via P (G) :=
⊕k

i=1 f (Gi).
� The path P (G) ∈Rk×d carries multi-scale information about G.
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Properties

As generalised Betti curves, filtration curves ‘inherit’ a lot of their properties.5 For

instance, the mean filtration curve is well-defined and may be used for hypothesis

testing.
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ε

0 2 4
ε

5B. Rieck, F. Sadlo and H. Leitte, ‘Topological Machine Learning with Persistence Indicator Functions’,

Topological Methods in Data Analysis and Visualization V, Cham, Switzerland, 2020, pp. 87–101.
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Choices, choices, choices…

Filtration functions

� Native edge weights

� Degree function

� Ollivier–Ricci curvature

� Heat kernel signature

Descriptor functions

� Node label histogram

� Number of connected components

All filtration functions are ‘shallow’ for now—we are not learning a task-specific

filtration.
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Experiments
Is this competitive?

Native edge weights

Method BZR_MD COX2_MD DHFR_MD ER_MD

CSM 77.63±1.29 — — —

HGK-SP 60.08±0.88 59.92±0.66 67.95±0.00 59.42±0.00

HGK-WL 52.64±1.20 57.15±1.20 66.08±1.02 66.72±1.28

MLG 51.46±0.61 51.15±0.00 67.95±0.00 60.72±0.69

WL 67.45±1.40 60.07±2.22 62.56±1.51 70.35±1.01

WL-OA 68.19±1.09 62.37±2.11 64.10±1.70 70.96±0.75

GNN 69.87±1.29 66.05±3.16 73.11±1.59 75.38±1.60

FC-V 75.61±1.13 73.41±0.79 76.78±0.69 82.51±1.04

Non-native edge weights

BZR COX2 DHFR PROTEINS

84.54±0.65 79.78±1.04 77.99±0.96 —

81.99±0.30 78.16±0.00 72.48±0.65 74.53±0.35

81.42±0.60 78.16±0.00 75.35±0.66 74.53±0.35

88.04±0.70 76.76±0.87 83.22±0.94 75.55±0.71

86.16±0.97 79.67±1.32 81.72±0.80 73.06±0.47

87.43±0.81 81.08±0.89 82.40±0.97 73.50±0.87

79.34±2.43 76.53±1.82 74.56±1.44 70.31±1.93

85.61±0.59 81.01±0.88 81.43±0.48 74.54±0.48
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How good is our overall performance?
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Lessons learned

� Filtration curves, even based on simple descriptors, are surprisingly competitive.

� The multi-scale aspects of TDA can be translated to other domains!

� Extensions based on learned filtrations are possible.

� We need better data sets that contain structural information.
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The future?
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