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What is graph classification?

Potential labels
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How to represent graphs?

# Two graphs G and G’ can have a different number of vertices.
# Hence, we require a vectorised representation f: G — R? of graphs.
# Such a representation f needs to be permutation-invariant.
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Digression

The Weisfeiler-Lehman test for graph isomorphism

Create a colour for each node in the graph (based on its label or its degree).
Collect colours of adjacent nodes in a multiset.

Compress the colours in the multiset and the node’s colour to form a new one.
Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

The other direction is not valid! Non-isomorphic graphs can give rise to
coinciding compressed labels.
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Weisfeiler-Lehman subtree features
Example forh =1
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Weisfeiler-Lehman subtree features

Some properties

Efficient calculation for small values of .

PN

% Good empirical performance.
Extensions for continuous features! and topology-aware variants exist.2

p

&

» But: static aggregation over neighbourhoods!

IM. Togninallit, E. Ghisu®, F. Llinares-Lépez, B. Rieck and K. Borgwardt, ‘Wasserstein
Weisfeiler-Lehman Graph Kernels', NeurIPS, vol. 32, 2019, pp. 6436-6446, arXiv: 1906.01277
[es.LG].

2, Rieck’, C. Bockt and K. Borgwardt, ‘A Persistent Weisfeiler-Lehman Procedure for Graph
Classification’, ICML, 2019, pp. 5448-5458.
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Graph neural networks in a nutshell

Learning better aggregation schemes

% Learn node representations i, based on aggregated attributes a,.
% Aggregate them over neighbourhoods.

% |teration k contains information up to k hops away.

% Repeat procedure K times.

ag,k) = aggregate(k)({h(uk*l) |ue NG(v)})
h(vk) = combine(k)(hs,k_l), ai,k))

he = readout({hﬁ,K) lve VG})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are
Graph Neural Networks?’, ICLR, 2019.
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Message passing in graphs

Example
V1
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Here, v; € R? is a d-dimensional attribute vector (use one-hot encoding for labels).
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Message passing in graphs

Example
U1
V2 V3
V4@ aggregate
Vs
Vg %

Here, v; € R? is a d-dimensional attribute vector (use one-hot encoding for labels).

Repeat this process multiple times and update the vertex representations accordingly.
Use a readout function to obtain a graph-level representation.
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Status quo

% Graphs are topological objects.
% But GNNs are incapable of recognising certain topological structures!
% What can we gain when imbuing them with knowledge about the topology?
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The expressivity of a filtration

—_
[¢8)

—_

We already know how to learn a filtration®, but how can we create a layer that neatly
integrates with arbitrary GNNs?

3C.D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020,
pp. 4314-4323.
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Topological layers for graph classification
TOGL

Topological Graph Neural Networks

Max Horn  Edward De Brouwer Michael Moor
W @ExpectationMax W @EdwardOnBrew W @Michael_D_Moor

aXiv:2102.07835v2 [csLG] 3Jun 2021

Yves Moreau  Karsten Borgwardt
¥ @kmborgwardt

M. Horn', E. De Brouwer®, M. Moor, Y. Moreau, B. Rieck' and K. Borgwardt?,
‘Topological Graph Neural Networks’, Preprint, 2021, arXiv: 2102.07835 [cs.LG]
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Topological graph neural networks

Overview
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# Use a node map @: R? — [RF to create k different filtrations of the graph.

% Use a coordinatisation function WV to create compatible representations of the
node attributes.
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Expressivity of a GNN

Typical GNN architectures are no more expressive than the Weisfeiler-Lehman test
for graph isomorphism, commonly abbreviated as WL[1].#

Theorem

Persistent homology is at least as expressive as WL[1], i.e. if the WL[1] label
sequences for two graphs G and G’ diverge, there exists an injective filtration f such
that the corresponding persistence diagrams D, and D, are not equal.

Proof sketch.

We first show how to construct an appropriate filtration function f from a WL|[1]
label sequence. Since f is not necessarily injective, we show that there is an injective
function f that is arbitrarily close to f and whose corresponding persistence
diagrams D, D~(’) do not coincide. |

4K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural Networks?’, ICLR, 2019.
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Expressivity of a GNN

There's more!

There are non-isomorphic graphs that WL[1] cannot distinguish, but persistent

homology can:
G G’

We have B,(G) = 1(G) = 2, because G consists of two connected components and
two cycles, whereas B(G’) = f1(G’) = 1 as G’ only consists of one connected
component and one cycle.
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Experiments

# Take GCN architecture with 4 convolutional layers (GCN-4).
% Replace second layer by TOGL.

% Use ‘static’ variant that ‘fakes’ topological calculations as an ablation.

Advantage

Architectures have approximately the same number of parameters; we are therefore
comparing ‘apples and apples.

Plan

Assess expressivity on synthetic data sets.

Assess predictive performance on data sets without node features.
Assess predictive performance on benchmark data sets.
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Expressivity
Cycles data set
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Expressivity

Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the
utility of topological features. Hence, we replaced all node features by random ones.

Graph classification Node classification
Method DD ENZYMES MNIST PROTEINS Cluster Pattern
GAT-4 63.3+3.7 21.7+2.9 63.2+10.4 67.5+2.6 16.7+0.0 58.3+8.8
GIN-4 75.6+2.8 21.3+6.5 83.4+ 0.9 74.6+3.1 16.4+0.1 84.8+0.0
GCN-4 (baseline) 68.0+3.6 22.0+3.3 76.2+ 0.5 68.8+2.8 16.7+0.0 85.6+0.0
TopoGNN-3-1 75.1+2.1 30.3+6.5 84.8+ 0.4 73.8+4.3 16.8+0.0 86.7+0.0

TopoGNN-3-1 (static) 68.0+2.4 23.7+5.4 82.9+ 0.0 71.2+5.1 16.8+0.0 85.8+0.0
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Performance as a function of the number of layers
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not
driven by the availability of topological structures!

Graph classification Node classification
Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B CLUSTER PATTERN
GAT-4 64.2+0.4 75.9+3.8 68.5+5.2 95.5+0.2 76.3+2.4 — — 57.7+0.3 75.8+1.8
GATED-GCN-4 67.320.3 72.9+2.1 65.7+4.9 97.3+0.1 76.4%2.9 — — 60.4+0.4 84.5+0.1
GIN-4 55.5+1.5 71.9+3.9 65.3+6.8 96.5+0.3 74.1+3.4 72.9+4.7 89.8+2.2 58.4+0.2 85.6
WL - 77.7£2.0 54.3+0.9 - 73.1+0.5 71.2£0.5 78.0+0.6 — -
WL-OA — 77.8+1.2 58.9+0.9 — 73.5+0.9 74.0+0.7 87.6+0.3 — —
GCN-4 (baseline) 54.2+1.5 72.8+4.1 65.8+4.6 90.0£+0.3 76.1+2.4  68.6+4.9 92.8+1.7 57.0+0.9 85.5+0.4
TopoGNN-3-1 61.7+1.0 73.2+4.7 53.0+9.2 95.5£0.2  76.0£3.9  72.0£2.3 89.4+2.2 60.4+0.2 86.6x0.1

TopoGNN-3-1 (static) 62.1+0.5 71.0+2.8 49.8+7.0 95.4+0.1  75.7+#3.6  72.84#54 92.1+1.6 60.5£0.2 85.6+0.1
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Where do we go from here?

# ‘If all you have is a hammer, everything looks like a nail.” Our data sets may
actually stymie progress in GNN research because their classification does not
necessarily require structural information.

% Nevertheless, higher-order structures (such as cliques) can be crucial in
discerning between different graphs.

% Would an integration into GIN architectures be smarter?

% Can we state conditions under which we are guaranteed to learn an appropriate
filtration function?

% What do we gain from learning a filtration function?
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Filtration curves

Leslie O'Bray Karsten Borgwardt

W @leslieobray ¥ @kmborgwardt

L. O’Bray?, B. Rieck' and K. Borgwardst, ‘Filtration Curves for Graph Representation’,
KDD, New York, NY, USA, 2021, in press
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Filtration curves
Motivation

% Given a filtration of graphs, we can easily obtain a persistence diagram.
% Persistence diagrams can be conveniently represented by Betti curves.
% What if we use a more general descriptor function here?
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Example

In this example, we use the node label histogram as a descriptor function.
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Example

Label count
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In this example, we use the node label histogram as a descriptor function.
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General idea

# Pick function to induce a graph filtration G; C G, --- C G, =G.

# Pick descriptor function f: G — R%.

# Evaluate f alongside the filtration.

# This turns a graph G into a high-dimensional path via P(G) @l L f(G)).

# The path P(G) € R**? carries multi-scale information about G.
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Properties

As generalised Betti curves, filtration curves ‘inherit’ a lot of their properties.® For
instance, the mean filtration curve is well-defined and may be used for hypothesis
testing.

5B. Rieck, F. Sadlo and H. Leitte, ‘Topological Machine Learning with Persistence Indicator Functions’,
Topological Methods in Data Analysis and Visualization V, Cham, Switzerland, 2020, pp. 87-101.
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Choices, choices, choices...

Filtration functions Descriptor functions
% Native edge weights #» Node label histogram
& Degree function 2 Number of connected components

A

Ollivier-Ricci curvature

he

)

&

Heat kernel signature

All filtration functions are ‘shallow’ for now—we are not learning a task-specific
filtration.
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Experiments

Is this competitive?

Native edge weights Non-native edge weights
Method BZR_MD COX2_MD DHFR_MD ER_MD BZR CoX2 DHFR PROTEINS
CSM 77.63+£1.29 - - - 84.54+0.65 79.78+1.04 77.99+0.96 -
HGK-SP  60.08+0.88 59.92+0.66 67.95+0.00 59.42+0.00 81.99+0.30 78.16+0.00 72.48+0.65 74.53+0.35
HGK-WL 52.64+1.20 57.15+1.20 66.08+1.02 66.72+1.28 81.42+0.60 78.16+x0.00 75.35+0.66 74.53+0.35
MLG 51.46+0.61 51.15+0.00 67.95+0.00 60.72+0.69 88.04+0.70 76.76+0.87 83.22+0.94 75.55+0.71
WL 67.45+1.40 60.07+2.22 62.56+1.51 70.35+1.01 86.16+0.97 79.67+1.32 81.72+0.80 73.06+0.47
WL-OA 68.19+1.09 62.37+2.11 64.10+1.70 70.96+0.75 87.43+0.81 81.08+0.89 82.40+0.97 73.50+0.87
GNN 69.87+1.29 66.05+3.16 73.11+1.59 75.38+1.60 79.34+243 76.53£1.82 74.56+1.44 70.31+1.93
FC-V 75.61+1.13 73.41+0.79 76.78+0.69 82.51+1.04 85.61+0.59 81.01+0.88 81.43+0.48 74.54+0.48
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How good is our overall performance?

Absolute distance to accuracy of best method
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Lessons learned

PN

Filtration curves, even based on simple descriptors, are surprisingly competitive.

o g

The multi-scale aspects of TDA can be translated to other domains!
= Extensions based on learned filtrations are possible.
We need better data sets that contain structural information.

%
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The future?

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT
THE ANSWERS ON THE OTHER SIDE.

VHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START [DOKING RIGHT.
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