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Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@bsse.ethz.ch or
reach out to @Pseudomanifold on Twitter. You can find the slides and additional
information with links to more literature here:
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Recap

e There is a multi-scale generalisation of Betti numbers, called persistent homology.
e |t is versatile and can be applied to point clouds or structured data.
e The resulting descriptors are called persistence diagrams.
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In this lecture

The landscape of topological descriptors

What choices of topological descriptors do we have? What are their properties and
respective advantages?
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Persistence diagrams

Points are tuples in R x R U {oo}.

- 3 Persistence corresponds to distance to diagonal.
Multiplicity of each point is not apparent!
Space under diagonal is typically unused.

Destruction
[ ] [ ] [ ]

Creation
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Properties of persistence diagrams

Stability (intuition)
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Distances between persistence diagrams

Bottleneck distance
Given two persistence diagrams D and D', their bottleneck distance is defined as

Wao(D,D'):= inf sup ||x — 7(x)]| e,
1: D=D' D

where i7: D — D’ denotes a bijection between the point sets of D and D’ and || - ||
refers to the L, distance between two points in R2.

Wasserstein distance

W, (D1, D) = ( inf ) I\X—W(X)||50>p

xeDs

n: D1—D,
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Differences between the two distances

Bottleneck distance Wasserstein distance
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Differences between the two distances

Bottleneck distance Wasserstein distance
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Properties of persistence diagrams
Stability, formal definition

Tame functions

A function f: M — R is tame if it has a finite number of homological critical values
and its homology groups are finite-dimensional.

Theorem

Let M be a triangulable space with continuous tame functions f,g: M — RR. Then the
corresponding persistence diagrams Dy and Dy satisfy Weo (Df, Dg) < || f — &l|co-

This theorem is due to Cohen-Steiner et al.! and laid the foundation for practical
uses of persistent homology.

1D. Cohen-Steiner et al., ‘Stability of persistence diagrams’, Discrete & Computational Geometry 37.1,
2007, pp. 103-120
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Properties of persistence diagrams
Stability only with respect to small-scale perturbations
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Properties of persistence diagrams
Stability only with respect to small-scale perturbations
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Properties of persistence diagrams
Stability only with respect to small-scale perturbations
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Interlude
Kernel theory

Kernel

Given a set X, a function k: X x X — R is a kernel if there is a Hilbert space # (an
inner product space that is also a complete metric space) and amap ®: X — H,
such that k(x,y) = (P(x), P(y))y forall x,y € X.

What is this good for?

Such a kernel can be used to assess the dissimilarity between two objects! The
feature space H can be high-dimensional, thus simplifying classification.

r 2020 10/3
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A Stable Multi-Scale Kernel for Topological Machine Learning

This is the first kernel between persistence diagrams?; it is simple to implement and
expressive.

Kernel and feature map definition

KD,D)i=g— ), exp(=87c  p—ql") —exp(-8~"c |p -7l
peD,qeD’
() 4m,p;)exp (=47t = pl?) — exp(=47"o ! |x = 1)

2). Reininghaus et al., ‘A stable multi-scale kernel for topological machine learning’, IEEE Conference
on Computer Vision and Pattern Recognmon (CVPR), Red Hook, NY, USA, 2015, pp. 4741-4748
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A Stable Multi-Scale Kernel for Topological Machine Learning

Feature map illustration
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More kernels & applications

Alternative formulations exist, based on sliced Wasserstein distance calculations?,
kernel embeddings®, or Riemannian geometry>.

Applications

e Kernel PCA for visualisation, dimensionality reduction, and feature generation
e Kernel SVM for classification
e Kernel SVR for regression

3M. Carriere et al., ‘Sliced Wasserstein Kernel for Persistence Diagrams’, vol. 70, Proceedings of Machine
Learning Research, 2017, pp. 664-673

4G. Kusano et al., ‘Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor’, Journal
of Machine Learning Research 18.189, 2018, pp. 1-41

5T. Leand M. Yamada, ‘Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams’,
Advances in Neural Information Processing Systems 31, 2018, pp. 10007-10018
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Betti curves

A simplified representation of persistence diagrams

Persistence diagram

S N & O
T

| | | | |

0 2 4 6 8

The Betti curve is a function mapping a persistence diagram to an integer-valued
curve, i.e. each Betti curve is a function B: R — IN.
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Betti curves

A simplified representation of persistence diagrams

Persistence diagram Persistence barcode
8| : 8l
6| . 6 1
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The Betti curve is a function mapping a persistence diagram to an integer-valued
curve, i.e. each Betti curve is a function B: R — IN.
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Betti curves

A simplified representation of persistence diagrams

Persistence diagram Persistence barcode Betti curve
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The Betti curve is a function mapping a persistence diagram to an integer-valued
curve, i.e. each Betti curve is a function B: R — IN.
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Properties of Betti curves

Easy to calculate

Simple representation, ‘living’ in the space of piecewise linear functions
Vector space operations are possible (addition, scalar multiplication)
Distances and kernels can be defined

Kernel
ky(D,D') := —(/R Bo(x) - Bp (x)|dx)’

More properties and formal descriptions are available in a preprint!®

6B. Rieck et al., Topological Machine Learning with Persistence Indicator Functions, 2019, arXiv:
1907.13496 [math.AT], in press
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https://arxiv.org/abs/1907.13496

Betti curves

Exploiting the vector space structure

Sphere,d =1 Torus,d =1
30 30 |

20 + 20 +

10 /\ 10 |
0 | 0

0 02 04 06 0 02 04 0.6

Permits hypothesis testing or comparing means of distributions!
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Betti curves

Classification scenario example

1 |
e Use REDDIT-BINARY data set (co-occurrence c 0.8
graphs) 206 |
e Calculate filtration based on vertex degree 'g 04 |
e Calculate persistence diagrams for a -
d =1 (cycles) 0.2
¢ Given p = 1, use a kernel SVM for 0
classification 0 02 04 06 08 1

Recall
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Persistence landscapes

e Calculate rank of ‘covered’ topological features of a diagram
o ‘Peel off’ layers iteratively

q
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This formulation is due to Peter Bubenik’; it has beneficial statistical properties, and
also permits the efficient calculation of distances and kernels!
7P. Bubenik, ‘Statistical Topological Data Analysis Using Persistence Landscapes’, Journal of Machine

Learning Research 16, 2015, pp. 77-102
ETHzirich
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Persistence landscapes

Properties and recent work

e The landscape can be sampled at regular intervals to obtain
a fixed-size feature vector.
e Built-in hierarchy!
e Bijective mapping (no information lost).
e Stability theorems hold.
e Recently: usage as neural network layer!
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Other functional summaries

Template functions

e Evaluate template (tent function) on persistence diagram.
e This incorporates more than just point information!
Let g be a template function operating on persistence pairs,

then we obtain a simple embedding based on summation:
fiRxRU{eo} - R
D — Z g(x)

xeD

Obtain a feature vector by using multiple template functions!
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Histogram-based vectorisation

Cluster persistence diagram

Learn representatives

Learn ‘bag-of-word’ (BOW) representation

Use quantised BOW representation as feature vector

Parameters are not easy to pick and there is no ‘intuitive’
description of the resulting representation. This can be
overcome, however!
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Persistence images

Multi-scale descriptors

Algorithm

Use ¥: R? — R to turn a diagram D into a surface via
Y (z) := Leyep W(x, y)P(x,y,2), where w(-) is a fixed piecewise linear weight
function and ®(-) denotes a probability distribution, which is typically chosen to be a

normalised symmetric Gaussian. By discretising ¥ (using an r x r grid), a persistence
diagram is transformed into a persistence image.8

8H. Adams et al., ‘Persistence Images: A Stable Vector Representation of Persistent Homology’,
Journal of Machine Learning Research 18.8, 2017, pp. 1-35
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Persistence images

Properties

Persistence Images: A Stable Vector Representation of
Persistent Hon

Beneficial stability properties

Intuitive description in terms of density estimates

Resolution and smoothing parameter are hard to choose

Representation is not sparse (quadratic scaling with 7!)

Easy to use in a classification setting, though!
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Extensions of persistence images

Learning weights

Learning metrics for persistence-based summaries
and applications for graph classification

Obtain persistence images from graph filtration

Learn a weight function on the persistence image

Calculate weighted distance between images
Use this as a kernel in an SVM
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Other vectorisation methods

Extracting signatures

Stable Topological Signatures for Points on 3D Shapes

ETHziirich

Given two points x, y in a persistence diagram, calculate

m(x,y) = min{||x — yl|e, da(x),da(y)},

where d, (x) denotes the L., distance to the diagonal. Sort all
m(x,y) in descending order and pick k of them (padding with
zeroes) to obtain a fixed-size feature vector representation.
Very effective, but the computation scales quadratically in the
number of entries of a persistence diagram!
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Other vectorisation methods

Summary statistics

Norms of a persistence diagram

| D]l := max pers(x,y)” and | D], := »/ ) pers(x,y)?,
xy€eD x,yeD

These norms are stable and highly useful in obtaining simple descriptions of
time-varying persistence diagrams!
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Example

Total persistence of a time series of persistence diagrams

34-10° |
32-10° |
3.10°

28105 T T T T T T T T
20 40 60 80 100 120 140 160

Multiple curves can be easily compared with each other—making this an excellent
proxy for more complicated distance calculations.
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Generic vectorisation based on signatures

Different representations can also give rise to paths.

Use path signature (a universal non-linearity on paths of
bounded variation) to compare them.

Path signatures have several beneficial properties, one of
them being stability!

e Promising results, but computationally ‘heavy’.
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Which method to use in practice?

Persistence landscapes ‘

p-norm / co-norm ‘

ired
No features requir

’ Multi-scale kernel ‘

F
Catures "&quireq

’ Persistence images ‘
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Take-away messages

e The original persistence diagram is cumbersome to work with due to its multiset
structure.

e Hence, there are numerous topological descriptors for different usage scenarios.

e Two large classes of methods exist, kernel-based and feature-based (although
some kernels also give rise to finite-dimensional features).
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